Optoelectronics Company LOGO
LED Solar Simulation: Accurately replicating the power of the sun with Ushio Epitex

LED Solar Simulation: Accurately replicating the power of the sun with Ushio Epitex

From an original USHIO Europe article https://www.ushio.eu/led-solar-simulation/ June 8th, 2021

What is a solar simulator?

A solar, or sun simulator, is an artificial system designed to accurately replicate the spectral distribution and illuminance of natural sunlight. There are different types of solar simulator, each with technical specifications designed to fit particular applications. The various types are often separated by the type of exposure in use—flashed, continuous, and pulsed. As new scientific advances were made, Ushio’s attention shifted from the standard halogen and xenon lamps. We have entered a new age of LED solar simulation technology, with solid state lighting (SSL) taking centre stage. Ushio’s Epitex LEDs offer a flexible pulse drive and spectrum, as well as a lifetime that far exceeds its predecessors.

How does the IEC define ‘natural sunlight’?

The spectrum of sunlight is defined as the Air Mass 1.5 Global (AM 1.5G) Spectrum. Under AM 1.5G, one Sun equals an irradiance of 100 mW/cm2. The International Electrotechnical Commission (IEC) described the properties of the natural sunlight that penetrates our atmosphere in IEC 60904-9; therefore, any industry-standard solar simulator must be able to operate in accordance with those guidelines.

 

Air Mass Global Reference Spectrum

 

Under IEC 60904-9, the overall performance of a solar simulator is measured and rated by three metrics:

  • Spectral match to natural sunlight
  • Uniformity of irradiance over the illumination area
  • Temporal variability of irradiance

The IEC standard scores each of the three metrics on an “ABC” scale, with “A” representing the closest possible match to the respective properties of natural sunlight. A perfect triple-A score is attainable with LED-based solar simulators, but to do so, some strict targets must be met.

Application Focus: Silicon solar cell production

To illustrate the strict targets demanded of solar simulation systems, we introduce a common application as an example for you. As one of the most abundant elements on planet Earth, silicon (Si) is the most common material used for the production of solar cells. Solar simulators can imitate various environmental conditions to work out how efficient Si solar cells are. It is important to remember that solar cells will generate far less electricity on a cloudy winter’s day. Silicon has a forbidden band gap of 1.12 electron Volts (eV), which means the photons hitting the solar cell must have energy in excess of 1.12 eV to generate an electronic charge. An LED solar simulation system driven by Ushio Epitex helps to work out how efficient the equipment will be in every possible environmental scenario.

A sun simulator must also closely match the AM 1.5G spectrum between 300 and 1,200 nm. For the highest class of sun simulators, the spectrum variance should not exceed ±12.5% in each wavelength range. The irradiation of any substrate, such as a typical 200 mm2 solar cell, must remain within ±2% uniformity over the surface too.

Meanwhile, the temporal stability of the irradiance is the final important factor. The irradiance power must fluctuate as little as possible during the course of the simulation. Therefore, a measurement is taken to detect maximum and minimum levels of irradiance during the simulation. This gives a fairly accurate idea of how temporally stable the irradiance is.

 

 

solar cell testing schematic

Which industrial processes need LED solar simulators?

  • Aerospace
  • Automotive
  • Biomass
  • Cosmetics
  • Environmental Science
  • Material degradation
  • Photochemical catalysis
  • Photovoltaics (PV) production and testing
  • Plastics, paints, lacquers, varnishes, and other coatings
  • Quality assurance
  • Sunscreen research & development
  • Textiles industry

Discharge lamps vs LEDs: Where is solar simulation technology going?

Previously, pulsed xenon (Xe) short arc and metal halide (MH) discharge lamps dominated solar simulation; however, these technologies are susceptible to a few disadvantages:

  • Costly filters are required to align with AM 1.5G spectrum
  • Thermal management required to cope with excessive heat production
  • Limited pulse width (PW) control
  • Short lifespan

In the new SSL generation, an array of LEDs can adequately cater for the AM 1.5G standards while avoiding those issues. The main advantages of LEDs as a solar simulation light source are:

  • Spectral flexibility: Increased spectral match precision and allows the reproduction of various real-world irradiation conditions
  • Pulse drive flexibility: LEDs offer a freely-adjusted pulse width
  • Built-in thermal management: LED packages have a copper heatsink or a ceramic base to safely dissipate excess thermal energy
  • Longer lifespan: LEDs save on maintenance, reduce downtime for replacements, and minimizes recalibration time

Which LEDs are best for solar simulation applications?

The Epitex series offers single- and multi-chip LEDs covering wavelengths from 365 nanometers (nm) to 1,750 nm; crossing through the ultraviolet (UV) and visible light ranges, up to the short-wavelength infrared (SWIR) region (1,050 nm ­- 1,750 nm). While there are many different types of LED package, the SMBB and EDC series’ are the most suited to solar simulation applications.

 

solar cell testing schematic

 

Ushio Epitex SMBB LEDs

The SMBB family is perhaps the most versatile set of LEDs on the market. Equipped with a copper heat sink, these record-breaking 5 mm2 LED packages are available in single or multi-chip form.

Solar simulators can use a set of single-wavelength, 1 mm2 high-powered chips; or mount up to three chips to emit multiple wavelengths from each package. If the solar simulator needs more power, a multi-chip SMBB can mount up to three chips of the same wavelength and triple its output.

solar cell testing schematic

Ushio Epitex D Series LEDs

Ushio manufactures the most powerful and efficient SWIR LEDs ever produced, the Epitex D Series, which covers the long wavelength side of the solar spectral match specification. Ushio delivers the perfect solution to your LED solar simulation needs with excellent customization options, including your choice of variations on wavelength, chip size, lens type, and more.

The D Series utilizes different semiconductor materials in order to find the perfect chip material for each wavelength. Indium gallium arsenide phosphide (InGaAsP) is the semiconductor material used to emit SWIR wavelengths from 1,000 nm to 1,750 nm region. This range is particularly useful for the solar simulation testing and inspection of compound solar cells.

Ushio Epitex EDC LEDs

EDC packages feature a ceramic base which serves as an excellent heatsink and provides exceptional isolation from the circuit. The 3.5 mm2 EDC packages are mounted with a single 1 mm2 chip and are capable of the fulfilling same applications as single-chip SMBBs. A smaller footprint frees space for more LEDs or other components.

solar cell testing schematic

Conclusion: why are Ushio’s Epitex LEDs the future of solar simulation?

  • Continuous wave or flexible pulsed optical output
  • Extremely long operating lifetime
  • Flexible light pattern
  • High-power
  • Independently-run, monochromatic LED chips
  • Mercury-free
  • Multiple chips of different wavelengths can be mounted in one LED package
  • Optional integrated photodiodes
  • Relatively cheap to buy and to run
  • State-of-the-art Japanese technology
  • Tiny footprint

USHIO LEDs

All USHIO high performance light emitting diodes are available from the Optoelectronics Company. Please contact the Optoelectronics Company to request samples for testing.

about USHIO

USHIO OPTO SEMICONDUCTORS, INC. manufactures world class laser diodes and other optical devices utilising their unique laser technologies and manufacturing expertise. The product line-up includes high power red laser diodes for displays, red laser diodes for medical and measurement applications, violet laser diodes for exposure equipment and infrared emitting diodes for optical encoders.

USHIO’s high performance laser diodes are proven to consume a low operating current which extends battery life whilst maintaining the integrity of the laser diode power in a variety of applications such as inspection, measurement and biomedical applications and as a light source for optical equipment.

All USHIO diodes are RoHS compliant.

http://www.ushio-optosemi.com

ABOUT THE OPTOELECTRONICS COMPANY LTD

The Optoelectronics Company is a manufacturer of custom-designed and standard laser diode modules and laser diode collimators. It is also a supplier of USHIO (ex Oclaro ex Opnext) Laser Diodes and LEDs, OSRAM laser diodes and Panasonic Aspherical Glass Lenses to customers throughout the UK, Europe and USA.

contact details

For more information about the Optoelectronics Company please visit our website at www.oe-company.com or contact us at: Green End Farm, Wood End Green, Henham, Hertfordshire, CM22 6AY, UK, tel: +44 (0) 1279 851851, email: info@oe-company.com.

####

This news release is issued in accordance with clause 1.2j of the British codes of advertising and sales promotion and therefore cannot be subject to a transaction of any kind.